更多>>精华博文推荐
更多>>人气最旺专家

赵存约

领域:39健康网

介绍:若实在需要公开商用,请联系网站工作人员取得许可。...

方婧

领域:爱丽婚嫁网

介绍:体现共同富裕原则,广泛吸收社会资金,缓解就业压力,增加积累和税收。亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗

凯发真人赌博开户
本站新公告亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗
by6 | 2019-03-19 | 阅读(206) | 评论(914)
其次可以更好的指导生产,提供给油田剩余油的分布状况,为下一步开发调整提供依据,从而达到“控水稳油、增储上产的目的。【阅读全文】
亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗
yfb | 2019-03-19 | 阅读(212) | 评论(6)
为推动驻日美军基地迁至边野古地区,日本防卫省冲绳防卫局将于8月17日起向护岸围住的预定填海造地区域投放砂石。【阅读全文】
5bs | 2019-03-19 | 阅读(671) | 评论(42)
PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短)【阅读全文】
x5d | 2019-03-19 | 阅读(654) | 评论(942)
在您使用过程中必须同时遵守两边服务条款。【阅读全文】
ye5 | 2019-03-19 | 阅读(960) | 评论(573)
;;第二自然段告诉了我们什么?;大象又高又大,身子像一堵墙,腿像四根柱子。【阅读全文】
x4h | 2019-03-18 | 阅读(276) | 评论(912)
 考点二、影响财政收入的主要因素经济发展水平(基础)分配政策表现经济发展水平对财政收入的影响是基础性的(根与叶、源与流)在社会财富总量一定的前提下,如果国家财政集中的财富过多或过少,会影响到国家财政收入和国家职能的发挥,也不利于企业和个人的发展措施根本途径:大力发展生产力,增加社会财富总量,保证国家财政收入的持续增长。【阅读全文】
tf4 | 2019-03-18 | 阅读(969) | 评论(144)
(三)强化对民生事业的监督。【阅读全文】
fct | 2019-03-18 | 阅读(322) | 评论(759)
走中国特色社会主义文化发展道路是建设社会主义文化强国的必由之路。【阅读全文】
亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗,亚美娱乐-优惠永远多一点首页是真的吗
wdz | 2019-03-18 | 阅读(609) | 评论(947)
为什么木条、硫分别在空气里和氧气里燃烧的现象不同它说明了什么——氧气的含量越高,燃烧越剧烈。【阅读全文】
pwx | 2019-03-17 | 阅读(580) | 评论(780)
目前一般认为河道砂体内剩余油在简单正韵律的上部富集和复杂正韵律层内部多段富集113·14】o③微构造的影响微构造(油层微型构造)指的是由于古地形和对油藏顶部的压实作用所引起的微小波动而造成的构造。【阅读全文】
tac | 2019-03-17 | 阅读(576) | 评论(481)
二文皆精彩之至。【阅读全文】
3bi | 2019-03-17 | 阅读(278) | 评论(681)
(法新社)宋晓军进一步表示,美国方面则考虑到“普特会”的问题,如果“普特会”如期举行,那么讨论的问题远远不局限于乌克兰问题,因此美国不会在乌克兰问题上对俄罗斯采取过于激烈的行动。【阅读全文】
ho4 | 2019-03-17 | 阅读(9) | 评论(23)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
d2y | 2019-03-16 | 阅读(481) | 评论(591)
日本人从骨子里就认为,自己高人一等。【阅读全文】
lx3 | 2019-03-16 | 阅读(81) | 评论(410)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-03-19

利来国际官网平台 利来国际在钱服务 w66.利来国际 w66利来国际手机app 利来国际老牌
利来国际 利来国际娱乐老牌 利来国际游戏平台 利来娱乐w66 乐橙网游下载
利来国际 利来国际最老牌 利来国际最给利的老牌 w66com 利来国际老牌软件
利来国际旗舰版 利来娱乐网址 w66com 利来国际官网 www.v66利来国际
仁寿县| 鄂托克旗| 宣城市| 阿拉善右旗| 阜新| 沁水县| 东乌珠穆沁旗| 合肥市| 庆安县| 山阳县| 武隆县| 三门县| 阜新| 阿图什市| 罗江县| 麻阳| 达孜县| 新昌县| 耒阳市| 乐亭县| 桦甸市| 绥棱县| 同仁县| 垫江县| 商洛市| 盖州市| 松江区| 七台河市| 鱼台县| 正镶白旗| 文成县| 咸宁市| 宣恩县| 和林格尔县| 濮阳县| 浮梁县| 沽源县| 万源市| 依安县| 西贡区| 芜湖市| http://m.94228496.cn http://m.78500260.cn http://m.78500260.cn http://m.26190720.cn http://m.41516194.cn http://m.41684057.cn